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ISOTHEPdIAL FLOW OF A NON-NZWTONIAN FLUID THROUGH THE 

CHANNEL OF A VOLUTE-TYPE DISK PUMP UNDER CONDITIONS 

OF COMPLEX SHEAR 

V. I. Yankov and V. A. Makarov UDC 532.542:532.135 

A study is made pertaining to steady laminar flow of an anomalously viscous fluid 
between two rigid disks in one of which the thread has been cut in the form of 
an Archimedes spiral. 

The advantages of a volute-type disk pump with the thread cut in the form of an Archi- 
medes spiral over a conventional volute-type pump are the simplicity of its construction, 
the possibility of regulating the clearances between the spiral ridges and the smooth other 
disk, and the higher pressure head developed. The use of such pumps in industry is not wide- 
spread owing to, apparently, not only the large axial forces developing in them (which, by 
the way, can be successfully reduced by adoption of the bilateral volute construction) but 
also the unavailability of a design method. 

We will consider the isothermal flow of a non-Newtonian fluid through a volute-type 
disk pump consisting of two parallel rigid disks in one of which the thread has been cut in the 
form of an Archimedes spiral (Fig. ]a). The threaded disk is stationary, while the smooth 
disk rotates at a constant angular velocity ~o. It will be assumed in the formulation of the 
problem that the channel width S is much larger than the channel depth H and that there are 
no clearances between the spiral ridges and the smooth disk, the flow of the fluid being 
steady and laminar. All calculations will refer to the median line of the spiral (dash-dot 
line on the diagram), considering that the tangential velocity of the smooth disk Vo = r~o as 
well as the lead angle of the spiral 6 and the pressure gradients ~p/~= A~, ~p/~r = Ar vary 
only along the channel (in the (p direction) while remaining constant across its width. Let 
the inside radius and theoutsideradius of the Archimedes spiral be ri and ro, respectively. 
The velocity component in the z direction will be disregarded. 

In solving this problem we are mostly concerned about the pressure gradients ~p/~x = Ax, 
3p/3y = Ay and the flow rate Qx. Accordingly, the vector representing the tangential velo- 
city of the smooth disk Vo can be resolved into two components: Vx = Vo cos ~ and Vy = Vo 
sin ~ (Fig. ]b). 

The equations of motion, in projection on the axes (p and r, can be written as 

o~ _ A~ o~ = A,-- P __V~ ( ] ) 
Oz r ' Oz r 

An analysis of the solution to Eqs. (1) for a Newtonian fluid has revealed that, with 
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Fig.  1. Volute- type disk pump (a) and i t s  schematic de- 
s ign diagram (b). 

NRe ~ I0, addition of the term 0V$/r to the equation of motion in the r-projection has al- 
most no effect on the velocity profiles and on the Ap (pressure head)--Qx (flow rate) char- 
acteristics of a volute-type disk pump. Considering that such pumps are intended for trans- 
fer of high-viscosity fluids and rarely operate even with NRe = l, we disregard the centri- 
fugal term in Eqs. (I) so that the solution can be written as 

%z -- A~ ( z - -  Hci), ~,~ = AT ( z - -  Hc2). 
r 

As the rheological equation for such a fluid, we will use a power law, viz., in this 
case 

(2) 

n--I 

For the solution of the problem we will use the following dimensionless variables and 
parameters: 

1 
-- (4) 

z Av V~ V~ V~ Vv ~Oor [ B ] ~ 
a -  - - ,  - G ,  = G ,  

IAxl 0~0r o0r o0r o0r H H IAxl cos 6 

In the dimensionless quantities (4), we then write the boundary conditions of the 

problem as 

V i = V 2 = O  at ~ : 0 ;  V i = l ,  V~:O at ~ = 1 .  (5) 

Inasmuch as we will subsequently be interested in the projections of the fluid veloci- 
ties on axes x and y, pressure gradients A~ and Arcan be expressed through their components 

Ax and Ay as follows: 

A~ = (Ax cos  6 + A v sin 6) r, AT = Ax sin 6 - -  Av cos 6 .  ( 6 )  

A simultaneous so lu t i on  of Eqs. (2) and (3),  using the dimensionless q u a n t i t i e s  (4) and 
the expressions (6), yields [i] 

OV___L = 1__1____ (1 + a tg6) (~--c~), OV2 _ 1 ( t g 6 - - a )  (~ - -  c~),* (7) 
O~ +_ o~F a~ + aF 

where 

n-! 

F = [(1 + a tg 6) m (~ - -  c~) 2 + ( tg  8 - -  a) m (~ - -  c~) 2] ~n 

*The signs plus and minus before ~ correspond to flow of the fluid with A x ~ 0 and Ax < 0, 
respectively. The corresponding sign before a will be determined automatically in the course 
of the solution of the problem. 

134 



Integration of expressions (7), using the first pair of boundary conditions 
for the fluid velocities in the directions of axes q0 and r 

V~---- 1-t-___malg8 j" (;--FC,) d~, V~-- tg___m6-a j'(~--F @ d~, (8) 
0 0 

respectively. Considering that V~ = V~ cos ~ + V~ sin ~ and V~ = V~ sin ~ ~ Va cos G, we 
finally obtain for the dimensionless velocities V~ and V4 in the directions of axes x and y, 

0 0 

V; ---- l@___ga ig 6 sin 6 j" (~--C,)F d~. tgq_gS--a cos 6 j '  (~--&----~)F d;. 

0 0 

respectively, 

(9) 

(5), yields 

The flow rates, per unit channel width and per unit channel length~ in the directions 
of axes x and y are then 

1 1 

q ~ -  % r H ~  ~ % r i l l  . 
0 0 

Inserting expressions (9) into expressions (I0) and integrating by parts yields 

q~ 

q~ 

l + a t g 8  
i 

, cos ~ ~ (~ -- CalF( 1 -- D 
0 

1 + a t g 6  s 
~ sin 8 

0 

(~ -- c~) (1 -- ~) 
F 

1 

d ~ +  tgS--a4_~ sinSff (~--cD(I--~)F d~, 
0 

1 

dg tg+8 --c, a cos 6 s (g -- C~)F(t -- D d$o 
0 

(~o)  

In order to solve the problem, therefore, it is necessary to know the integration con- 
stants ci and c2 as well as pa rame te r  a and the  magni tude  of  a (or of  p r e s s u r e  g r a d i e n t  Ax). 
For f i n d i n g  t h e s e  q u a n t i t i e s ,  we use  the  second p a i r  of  boundary  c o n d i t i o n s  (5) and con-  
s t r a i n t s  which must be imposed on the flow rates in the directions x and y (qy = 0, and qx 
g iven  in  the  p rob lem) ,  w i t h  which we o b t a i n  a system, of  fou r  t r a n s c e n d e n t a l  e q u a t i o n s  

l+~uatg8 j' (~--F &) d ~ - - l = 0 ,  
0 

I 

j ' (~--c~) d~ = o, 
, F 

0 

1 I 

I +__+_aa tg 6 sin 6 ; (~ -- C~)F(1 -- ~) d~ tg• a cos 6 j~ (~ -- C2)F(1 -- ~) d~ = 0, 
0 0 

is 

<12) 

! ! 

1 + a tg 6 cos ~ I ( t -  c,) (1 - ~) dt ~ tg 6 - -  a sin 6 f ( ~ -  c2) (1 - -  t) d r - -  q~ = 0. 
_4-~ . F 4-~  j F 

0 0 

While solving the problem, one must bear in mind that the lead angle ~ of an Archimedes 
spiral is not a constant quantity but a function of the angular coordinate (o , ioe.~ 

I 6=90~  - - ,  
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or, since for an Archimedes spiral 

a function of the radius 

r -- % (13) 
2~ 

----- 90 ~  arctg - -  (14)  
2~r 

The length of an Archimedes spiral is 

l= 4----~- - ~ -  (r~ ri)" (15)  

The p r e s s u r e  head  d e v e l o p e d  by  a v o l u t e - t y p e  d i s k  pump i s  
t 

Ap =S A~dx. (16) 
0 

Inasmuch as the solution to the system of equations (12) yields the value of a, inserting 
into expression (16) the value pf A x in terms of ~ according to relation (4) will, with rela- 
tions (13) and (15) taken into-account, yields 

r_+(+;] (+;] 
�9 ~H \ H ) 7] [ co_--~ -- 2~H 2 ~ H J  3 +-- cos8 (17) 

i ~.i 
The power drawn by a volute-type disk pump can be calculated as 

dN = (Txz]~-_n cos 8 + ~v~lz=H sin 6) ~orSdx = ~]z=~ ~orSdx. (18) 

Integrating this expression (18), after the value of the shearing stress ~z according 
to relation (2) has been inserted into it, yields 

l 

N ' =  Hoo Ax (1 + a tg ~ (1 - -  ci) Sr cos 6 dx = 2n____BB Oo • 

0 

J i 0 

r i * i  

An analysis to the solution to our problem reveals that pressure gradient A x varies 
along the spiral not only in magnitude but also in direction. At some flow rate qx = qxo 
in the channel where r = ro the~e can be found a channel section where A x = 0. Therefore, 
Axe0 and is directed toward the center of the spiral along the channel segment ro ~r~ ro 
but A x ~ 0 and is directed outward along the channel segment rioter0. Depending on the 
magnitude of qx, the section with a zero pressure gradient can fall beyond the channel and 

then A x > 0 along the entire channel ri~r~ r o. 

For specific calculations we have selected the following values of parameters: ri = 
0.06 m, r o = 0.125 m, H = 0.01 m, S = 0.022 m, % = 0.025 m, ~o = I0 sec-1; B = 205 N-sec ~ 
m -2, n = 0.4, and Pi = 0. 

The system of equations (12) was solved numerically with the aid of a computer. The re- 

sults of calculations are shown in Figs. 2 and 3. 

The graph in Fig. 2a depicts the distribution of the pressure gradient A x along the 
channel at various flow rates Qx = ~orHSqx. This graph indicates that the pressure gradient 
is always positive when Qx = 0 (curve I), but is first negative and then positive when Qx = 
Qx,max (curve 5). The points at which these curves cross the axis of abscissas correspond 
to sections where Ax = 0. Curves 2-4 have been plotted for intermediate values of the flow 
rate. The graph indicates also that, as the flow rate is increased, the section at which 
A x = 0 shifts away from the inlet toward the outlet, and at flow rates higher than Qx,max 
(curves 6, 7) it can pass beyond the channel. It is noteworthy, furthermore, that the pres- 
sure gradient A x at any flow rate always increases with the radius, because the tangential 
velocity of the smooth disk increases with the radius. 

The graph in Fig. 2b depicts the distribution of the pressure head along the spiral 

136 



~.fo-5 - 

4 .--~U z / 
J 

2 / 

o ,.c ,1o L" 

Fig. 2. Distribution of the pressure gradient 
Ax, N/m 3 (a) and of the pressure head Ap, N/m 2 

(b) along the channel at various flow rates Qx, 
m3/sec: ~) 0; 2) 3.10 -s m3/sec; 3) 6.6"10 -5 m3/ 
sec; 4) 8.03"I0 -s mS/see; 5) 10.58"10 -5 m3/sec; 
6) 15.2"I0 -s m3/sec; 7) 18.10 -5 m3/sec. ~ in m. 
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Fig. 3. Dependence of the pressure head 
Ap (N/m 2) and of the input power N (N'm/ 
sec) on the flow rate Q (m3/sec) and on 
the viscous anomaly: 1) n = 0.4 and B = 
205 N'sec~ 2) n = 0.6 and B = 137 

N'sec~ 3) n = 1.0 and B = 62.5 N" 
sec.m -2 . 

channel. At a zero flow rate (curve ]) or at a low flow rate (curve 2) the pressure of the 
fluid rises continuously along the channel, while at high flow rates (curve 5) it first 
drops and then rises. It is important to note that at flow rates close to Qx,max or higher 
than that (curves 5-7) the entire pressure curve lies ws the negative range. The theo- 
retical minimum pressure head can reach very low levels, far below minus unity. Since physi- 
cally this is impossible, such a characteristic cannot be realized in practice. By produc- 
ing a certain pressure at the pump inlet, however, one can shift the Ap(1) curve into the 
positive range (dash line) and thus realize this characteristic in practice. 

The graph in Fig. 3 depicts the dependence of Ap and N on the flow rate Qx- Curves ] 
and curves 2 correspond to the flow of fluids with a viscous anomaly n = 0.4 and n = 0.6 re- 
spectively, while curve 3 corresponds to a Newtonian fluid with n = I. As was to be expected, 
the pressure head and the power input decrease with decreasing anomaly and this decrease 
occurs faster, moreover, the farther the fluids depart from a Newtonian one. It must also 
be noted that the flow rates of fluids with different viscous anomalies are not equal at a 
Ap = 0 pressure head and that this difference between their flow rates increases with the 
lead angle ~ (the pitch I) of the spiral. In our specific example the pitch of the spiral 
was small, so was the lead angle, consequently the flow rate Qx~max remained almost constant 
and independent of n. 
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NOTATION 

W, r, z, cylindrical coordinates; x, y, z, Cartesian coordinates; H and S, channel 
depth and width; ~, lead angle of the spiral; mo, angular velocity of the smooth disk; ri, 
r, ro, inside radius, the radius at any given point, and the outside radius of the spiral 
along its median line; AW, Ar, Ax, Ay, pressure gradients; p, density of the fluid; c I and 
c2, integration constants; T~z, TrY, Txz, Tyz, components of the stress tensor; VN, Vr, Vx, 
Vy, projections of the velocity of the fluid_on the axes ~, r, x, y, respectively; T, stress 
deviator; B and n, rheological parameters; A, strain rate tensor; VI, V2, V3, V4, dimen- 
sionless velocities of the fluid; a, ratio of pressure gradients; Qx and Qy, true flow rates 
in the directions x and y, respectively; Qx,max, true flow rate corresponding to a zero pres- 
sure head; qx and qy, dimensionless flow rates; I and X, spiral length and pitch; ~i and ~o, 
angular coordinates of the inside endpoint and the outside endpoint of the spiral on its 
median line; p, pressure; Pi, fluid pressure at the pump inlet; and N, input power. 

I .  
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AN ARTERIAL HEAT PIPE WITH A GROOVED EVAPORATOR 

V. S. Tarasov UDC 621.565.94 

A method is developed for calculating the hydrodynamic heat-transfer boundary 
of arterial heat pipes with capillary channels having a triangular profile in 
the evaporator. Comparison with experimental data demonstrates the satisfac- 
tory accuracy of the method. 

Evaporators for arterial heat pipes (AHP), equipped with ring-shaped capillary channels, 
e.g., grooves with a triangular profile (V-channels) (Fig. I), can operate with very dense 
heat fluxes with high heat-exchange coefficients [I-4]. However, there is no satisfactory 
theory for calculating the limiting characteristics of such AHP. The difficulty with the 
hydrodynamic theory developed in [1, 2] is that it does not relate the magnitude of the 
hydrodynamic heat-transfer boundary (HHTB), which determines the maximum attainable heat 
flux density in the evaporator, to the pressure losses in the heat carrier in the rest of the 
AHP and it does not provide a physically correct estimate of the influence of the contact 
angle on the HHTB. 

When heat is input uniformly, all evaporator channels are loaded identically and the 
HHTB will be determined by the channel in the beginning section of which, for x = 0, the 
meniscus is curved more strongly than ~n the neighboring channels [5]. In most cases, this 
is the edgemost channel that is farthest away from the condensor. For this channel, the 
following relation is valid: 

APeap= Ap~ @ APre~ ( 1 ) 

The pressure differential APrem in the rest of the AHP causes the meniscus to be curved in 
the starting section with a radius 

Ro = a/Aptera" (2) 

From the starting section to the end section x = Xm, the liquid moves under the action 
of a capillary pressure gradient, compensating for frictional resistance [I, 2]: 

dp___~'=_ dpea____p. (3) 
dx dx 
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